La inteligencia artificial revela variaciones en la anatomía cerebral de personas con autismo

Los investigadores del Boston College, en Estados Unidos, han observado que las diferencias de comportamiento entre individuos con este trastorno están relacionadas con variaciones en la estructura del cerebro

La inteligencia artificial revela variaciones en la anatomía cerebral de personas con autismo

Tiempo de lectura estimado: 7 minutos


AGENCIA SINC / ANA HERNANDO

Comprender la heterogeneidad del cerebro de las personas con trastorno del espectro autista (TEA) podría ser fundamental para mejorar su calidad de vida, ya que posibilitaría diagnósticos específicos e intervenciones conductuales más dirigidas.

Ahora, investigadores del Boston College (EE UU) han usado el machine learning (aprendizaje automático) para un análisis detallado de imágenes cerebrales de personas con autismo y han desvelado que las diferencias de comportamiento entre las personas con este trastorno están relacionadas con las variaciones en la estructura del cerebro. Los resultados del estudio se han publicado en la revista Science.

El equipo utilizó esta técnica de inteligencia artificial (IA) para estudiar los datos de las imágenes de resonancia magnética de más de 1.000 individuos con TEA y comparó esas imágenes con las que ofrecían las simulaciones computacionales sobre el aspecto que tendrían los cerebros si no tuvieran este trastorno.

Según explica a SINC Aidas Aglinskas, neurocientífio de la institución estadounidense y coautor del trabajo, “las variaciones estudiadas son diferencias en la neuroanatomía que indican un desarrollo alterado en determinadas regiones del cerebro”.

Áreas cerebrales expandidas y comprimidas

“En este estudio —prosigue— hemos investigado los cambios volumétricos asociados al trastorno del espectro autista, identificando las áreas cerebrales que están expandidas o comprimidas en comparación con lo que se esperaría si esa persona no lo tuviera”.

El experto indica que observaron que los cerebros de los individuos con autismo “difieren entre sí en muchas regiones cerebrales, incluidas las asociadas a los síntomas conocidos del TEA, como las implicadas en la cognición social, el lenguaje y las cortezas motoras”.

También señala que el hecho de que distintas personas con TEA “puedan tener afectadas diferentes regiones podría ayudar a explicar las grandes diferencias individuales en los síntomas: los afectados por este trastorno suelen presentar diferentes síntomas de distinta gravedad”, subraya.

El autismo difiere, tanto en síntomas como en neuroanatomía, de un individuo a otro. Investigaciones previas ya habían planteado la hipótesis de que podría no haber un único conjunto de correlaciones neuroanatómicas comunes a todos los individuos con TEA.

“Confirmar estas propuestas ha sido difícil porque identificar las alteraciones neuronales específicas del TEA es una tarea complicada”, afirma Aglinskas. “Los cerebros son diferentes debido a muchos factores, incluida la variación genética no debida a este trastorno, que es difícil de controlar en un estudio de investigación”.

El equipo superó esa barrera empleando el machine learning para identificar patrones de variabilidad neuronal que son específicos del TEA, lo que permitió identificar las vías neuronales específicamente afectadas, dice Aglinskas, quien realizó la investigación con los profesores adjuntos de neurociencia del Boston College Joshua Hartshorne y Stefano Anzellotti.

Variaciones neuroanatómicas escondidas

“Las diferencias relacionadas con el TEA en la anatomía del cerebro pueden ‘esconderse’ entre las diferencias que no están relacionadas con este trastorno”, apunta Aglinskas. “Como consecuencia, ha sido difícil identificar las variaciones en la anatomía del cerebro que están relacionadas con los distintos síntomas. Por eso, usamos la IA para separar las diferencias relacionadas con el trastorno de las que no lo estaban”.

En este caso los investigadores utilizaron patrones detectados por ordenador para crear una simulación de cómo sería el cerebro de cada individuo con TEA si no lo tuviera. Esto fue posible gracias a técnicas de machine learning, que separan las diferencias individuales en la anatomía del cerebro en la características específicas del TEA y las no relacionadas.

“Nos sorprendió descubrir que, a pesar de observar una gran variación en la anatomía del cerebro entre los individuos con autismo a través de múltiples dimensiones, los sujetos no se agrupaban en subtipos distintos y categóricos como se pensaba anteriormente”, señala Aglinskas.

“A nivel de anatomía cerebral, las diferencias individuales dentro del TEA podrían ser mejor captadas por las dimensiones continuas que por los subtipos categóricos, según el coautor, “pero es importante destacar que esto no descarta la posibilidad de que se puedan encontrar subtipos categóricos con otros tipos de mediciones cerebrales, como las imágenes funcionales”.

De cara al futuro, los autores indican la necesidad de comprender con más detalle cómo estas diferencias neuroanatómicas afectan al comportamiento. Anzellotti destaca que planean utilizar las herramientas de IA para buscar, más allá de la estructura del cerebro, formas de entender mejor los diagnósticos de TEA y el comportamiento de los individuos afectados.